
Constraint Satisfaction Problems (CSPs)

A binary constraint satisfaction problem consists of

• A set of n variables {x1, x2, …, xn} with respective finite 
domains D1, D2, …, Dn

– let  D = D1  D2  …  Dn

– let d be the size of the largest domain

• A set of e binary constraints {Cij }

–  Cij  represents a constraint between variables xi and xj  
specifying the set of legal pairs of values

– assume that Cij (u, v)  = Cji (v, u)



Constraint graph

A constraint graph is a directed graph with n nodes and e edges

• Each variable is a node

• Each constraint Cij is an edge from node xi to node xj

Variables {x1, x2, x3, x4, x5}

Constraints

– C31 = {(a,b), (a,c), (b,c)}

– C32 = {(a,b), (a,c), (b,c)}

– C34 = {(a,b), (a,c), (b,c)}

– C35 = {(a,b), (a,c), (b,c)}

– C54 = {(a,b), (a,c), (b,c)}
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Backtrack search

procedure bcssp(n)

consistent = true

i = initialize()

loop
if consistent then (i, consistent) = label(i)

else (i, consistent) = unlabel(i)

if  i > n  then return “solution found”

else if  i = 0  then return “no solution”

endloop
end bcssp



Chronological backtracking: initialize

function initialize()

for  i = 1  to  n

CDi = Di /* initialize current domains  */

endfor
return  1 /* return the first variable */

end initialize



Chronological backtracking: label

function bt-label(i)

for each vi   CDi  do
Set  xi = vi    and   consistent = true

for  each xj that has been previously assigned do
if Cij(xi, xj)  then

Remove vi from CDi   and set  consistent = false

Unassign xi and break inner loop

endif
if  consistent then  return (i+1, true)

endfor
return (i, false)



Chronological backtracking: unlabel

function bt-unlabel(i)

h = i – 1 /* Backtrack to previous variable */

CDi = Di 

Remove current value assigned to xh from CDh 

Unassign xh 

if  CDh  is empty then
return (h, false)

else
return (h, true)

end bt-unlabel
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Arc consistency

• An arc (i, j) in a constraint graph G is arc consistent with 
respect to domains Di and Dj iff

 v   Di,   w  Dj  : Cij(v, w)

– A graph G is arc consistent iff all its arcs are arc consistent

• Let P = D1  D2  …  Dn  and P  = D 1  D 2  …  D n  s.t.
P   P  .   P  is the largest arc consistent domain for G in P iff 

– G is arc consistent wrt P

– there is no P  such that P   P   P   and G is arc 
consistent wrt P  

• Theorem: The largest arc consistent domain exists and is 
unique



AC-5

• AC-5 is a generic arc consistency algorithm

– uses two abstract procedures ArcCons and LocalArcCons

– can be specialized to either AC-3 or AC-4

– can be specialized to exploit properties of constraints (e.g., 
functional, anti-functional, monotonic constraints)



Queue elements in AC-5

• AC-5 maintains a queue of elements of the form ((i, j), w)

– (i, j) is an arc, and w is a value in Dj that has been removed 
justifying the need to reconsider arc (i, j)

– Enqueue(j, , Q) inserts all elements of the form ((i, j), w) 
onto the queue Q such that (i, j) is an arc and w  
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ArcCons  and LocalArcCons

function  ArcCons(i, j)

Returns  = { v  Di | u   Dj ij(v, u) }

– Removing elements in  from Di  makes (i, j) arc consistent

function  LocalArcCons(i, j, w)

Assumes that w has been removed from Dj 

Returns  such that  2 1 where

1 = { v  Di |Cij(v, w) and  u   Dj ij(v, u) }

2 = { v  Di | u    Dj ij(v, u) }



Arc consistency with AC-5
procedure AC-5(G)

InitQueue(Q)

for each (i, j)   arc(G) do
= ArcCons(i, j)

Enqueue(i, , Q)

Remove(  , Di)

endfor
while not EmptyQueue(Q) do

((i, j), w) = Dequeue(Q)

 = LocalArcCons(i, j, w)

Enqueue(i, , Q)

Remove(  , Di)

endwhile
end AC-5



Counting queue operations in AC-5

• Introduce the Status of (edge, value) pairs such that

– InitQueue sets Status((k, i), v) = present if v in Di 
    = rejected otherwise

– Enqueue sets the Status of each queued item to suspended

– Dequeue sets the Status of dequeued item to rejected

• AC-5’s loops preserve the invariant that Status((k, i), v) 
= present iff     v in Di

=  suspended iff     v not in Di  and ((k, i), v)  on the Q
= rejected iff     v not in Di  and ((k, i), v) not  on the Q

AC-5 enqueues and dequeues at most O(ed) items



AC-3

• For arbitrary constraints ArcCons is O(d2)

• AC-3 is essentially AC-5 in which LocalArcCons is 
implemented using ArcCons

AC-3 is O(ed3)



AC-4

• If ArcCons is O(d2) and LocalArcCons is O(d)then AC-5 is O(ed2) 

• LocalArcCons(i, j, w) iterates through the “supports list” of w for 
edge (i, j), decrements “support counts”, and computes  as the 
set of values whose “support counts” go to 0

LocalArcCons is O(d) and ArcCons is O(d2) so AC-4 is O(ed2)
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Functional constraints

• A constraint C is functional wrt a domain D iff for all v   D 
there exists at most one w   D  such that C(v, w)

function ArcCons(i, j)

 = {}

for each  v  Di  do
if fij(v)   Dj then   =  {v}

return  

end ArcCons

function LocalArcCons(i, j, w)

if fji(w)  Di  then return {fji(w)}

else return {}

end LocalArcCons

ArcCons is O(d)
LocalArcCons is O(1)

AC-5 is O(ed)



Classes of constraints

• Other classes of constraints for which AC-5 is O(ed)

– anti-functional

– monotonic

– piecewise functional

– piecewise anti-functional

– piecewise monotonic


